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The unexpected energy spectrum of the positron/electron ratio is interpreted astrophysically, with a
possible exception of the 100–300 GeV range. The data indicate that this ratio, after a decline between 0.5
and 8 GeV, rises steadily with a trend towards saturation at 200–400 GeV. These observations (except for
the trend) appear to be in conflict with the diffusive shock acceleration (DSA) mechanism, operating in a
single supernova remnant (SNR) shock. We argue that eþ=e− ratio can still be explained by the diffusive
shock acceleration if positrons are accelerated in a subset of SNR shocks which (i) propagate in clumpy gas
media and (ii) are modified by accelerated cosmic ray protons. The protons penetrate into the dense gas
clumps upstream to produce positrons and charge the clumps positively. The induced electric field
expels positrons into the upstream plasma where they are shock accelerated. Since the shock is modified,
these positrons develop a harder spectrum than that of the cosmic ray electrons accelerated in other
SNRs. Mixing these populations explains the increase in the eþ=e− ratio at E > 8 GeV. It decreases at
E < 8 GeV because of a subshock weakening which also results from the shock modification. Contrary to
the expelled positrons, most of the antiprotons, electrons, and heavier nuclei, are left unaccelerated inside
the clumps. Scenarios for the 100–300 GeVAMS-02 fraction exceeding the model prediction, including,
but not limited to, possible dark matter contribution, are also discussed.
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I. INTRODUCTION

Recent measurements of a positron/electron,
eþ=ðe− þ eþÞ, excess in the 8–300 GeV range by
Pamela, Fermi-LAT, and AMS-02 [1–4] have added fuel
to the hotly contested race for elusive dark matter (DM)
signatures in rapidly improving cosmic ray (CR) data
[5–7]. Indeed, conventional acceleration schemes, even
the most promising of them all, the diffusive shock
acceleration (DSA), have not yet suggested any viable
mechanism for the eþ=ðe− þ eþÞ anomaly, free of tension
with the antiproton spectra and other secondaries [8–10].
In addition to the surprising excess at high energies, the

eþ=ðe− þ eþÞ ratio has a distinct minimum at ≈8 GeV
which is not easy to explain making a minimum of
assumptions. Both features appear at odds with the sin-
gle-source DSA operation, which predicts similar rigidity
(R ¼ momentum/charge) spectra for all primary species.
Moreover, there are also other well documented exceptions,
namely, the Heþþ=p and C=p ratios that both show a ∼R0.1

growth, also seemingly inconsistent with the DSA [11–13].
Less pronounced than eþ=ðe− þ eþÞ, but not less aston-
ishing at first glance, these anomalies can be explained by
the difference in charge to mass ratio [14]. Other scenarios
are possible but require additional assumptions, such as
inhomogeneity of the SNR environment [15–17] or multi-
ple sources with adjusted spectral indices (see [16,18,19]
for a recent discussion). In fact, the mass-to-charge based

explanation of the ≈0.1 difference in rigidity indices has
been given only for the He=p spectrum, while the C=pwas
measured with sufficient accuracy only recently [12] and
turned out to be identical to the He=p rigidity spectrum.
Thus, the mechanism suggested in [14] predicted the C=p
spectrum since He and C have the same mass-to-charge
ratio. If this injection mechanism is correct, the latest AMS-
02 data speak against a direct carbon acceleration from
grains [20].
The mass-to-charge selectivity of the DSAwhich works

for He=p and C=p does not apply to the eþ=e− fraction. It,
therefore, seems logical to look for a possible charge-sign
dependence of the SNR-DSA production of CRs, including
the eþ=ðe− þ eþÞ anomaly. We call it “anomaly” rather
than “excess” (also encountered in the literature) since the
ratio rises with the particle energy only at E > 8 GeV.
Below this energy, it declines, thus creating a deficit. The
decline, the rise, and the clear minimum between them (at
8 GeV) are all pivotal to the mechanism proposed here.
These aspects are intrinsic to a single-source mechanism
proposed, revealing unique characteristics of the acceler-
ator. By contrast, assuming two or more independent
positron contributions to the spectrum (as, e.g., in
Refs. [21–23]), one fits the nonmonotonic positron fraction,
but with no constraints on the underlying acceleration
mechanisms. The position of the minimum in the positron
fraction is then coincidental, and the fit does not add
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credibility to the model predictions for the higher energy
data points yet to come. We will return to this point in the
Discussion section.
A vast majority of conventional scenarios for the

eþ=ðe− þ eþÞ excess (including the present one) invoke
secondary positrons. They are produced by galactic CR
protons colliding with an ambient gas near a SNR accel-
erator, e.g. [24], elsewhere in the galaxy, e.g. [23,25], or are
immediately involved in the SNR shock acceleration
[10,22,26]. Some of these scenarios face the unmatched
antiprotons and other secondaries in the data, as discussed,
e.g., in [9,10,27]. Improvements along these lines have
recently been achieved by using Monte Carlo pp collision
event generators, e.g., [28]. However, improved cross
sections of pp collisions do not shed light on the physics
of eþ=ðe− þ eþÞ anomaly, particularly the minimum at
8 GeV. This spectrum complexity hints at richer physics
than a mere production of secondary eþ and p̄ power-law
spectra from the primary CR power law.
We propose and investigate the idea that the physics of

the eþ=ðe− þ eþÞ fraction and, by implication, that of the
p̄=p unmatched fraction, is in the charge-sign asymmetry
of particle acceleration. The subsequent particle propaga-
tion through the galaxy or multiple accelerators plays no
significant role in the phenomenon, as they act equally on
all species. This proposition is particularly consistent with a
scenario wherein almost all the positrons contributing to the
observed eþ=ðe− þ eþÞ ratio are produced in a single SNR
of a particular kind described further in the paper. Electrons
in the eþ=ðe− þ eþÞ fraction may in part originate from an
ensemble of other remnants. However, the single-source
explanation for the eþ=ðe− þ eþÞ anomaly is generic to all
SNRs of the kind and thus is equally consistent with its
multisource origin. From the Occam’s razor perspective,
this mechanism is preferred over those requiring different
types of sources, to state the obvious.
A striking exception to the proposed scenario is the

100–300 GeV range where the current AMS-02 points
significantly exceed our model predictions. This region
then requires an independent source atop of the SNR
contribution, which can be of a dark matter annihilation/
decay or pulsar origin. Further model improvements are
planned to see if simplifications made in its current version
are responsible for the difference, but it appears to be
unlikely.
The proposed mechanism relies on the following two

aspects of the DSA. The first one is the injection process
whereby particles become suprathermal and may then cross
and recross the shock front, thus gaining more energy. The
proposed injection mechanism is charge-sign asymmetric.
It differs from the conventional DSA in which the injection
efficiency primarily depends on the mass-to-charge ratio
but not so much on the sign of the charge (see, however, the
Discussion section). We will argue that the charge-sign
dependence of injection arises when the shock propagates

into an interstellar medium (ISM) containing clumps of
dense molecular gas (MC, for short).
The second aspect of the proposed mechanism concerns

the phenomenon of nonlinear shock modification which is
known to make the spectrum of low-energy particles
steeper and that of the high-energy particles flatter than
the canonical p−4 spectrum produced by strong but
unmodified shocks. Consequently, in the modified shocks,
a point p ¼ p4 exists in the particle energy spectrum where
the index is equal to 4. Assuming that the bulk of galactic
CR electrons are accelerated in conventional shocks, thus
having p−4 source spectra, the ratio of the modified
positron spectrum to unmodified electron spectrum will
show the required nonmonotonic behavior with a minimum
at p ¼ p4. In a customary p4fðpÞ normalization, the
individual positron spectrum is, therefore, the same as that
of the eþ=e− ratio. Therefore, it coincides with the proton
spectrum, provided all the species are relativistic. An
analytic solution places the proton p4fðpÞ minimum at
≲10 GeV=c (see Fig. 5 in Ref. [29]), depending weakly on
the shock Mach number, M, proton maximum energy,
Emax, and their injection rate. However, M ≳ 10 and
Emax ≳ 1 TeV conditions are required, along with some
minimum proton injection, for the solution to transition into
a strongly nonlinear regime (often called efficient accel-
eration). Although the minimum in the spectrum looks
encouraging for explaining the nonmonotonic eþ=e− ratio,
it was obtained for protons and needs to be reconsidered for
positrons in the 1−10 GeV=c momentum range. The
reason for that is a different momentum dependence of
positron and proton diffusivity (positrons enter a relativistic
transport regime at much lower energy than protons).
Once a SNR shock is strongly modified, MCs in its

precursor will survive the subshock UV and X radiation,
severely diminished in such shocks. At the same time,
shock-accelerated CR protons illuminate the MC well
before the subshock encounter. These CRs generate posi-
trons (along with other secondaries) in the MC interior by
colliding with the dense gas material. The CR protons
also charge the MC positively; as a result, many positively
charged particles abandon the MC, while negatively
charged particles remain inside. Being charged by the
shock-accelerated protons, the MC thus acquires a positive
potential which creates a charge-sign asymmetry for the
subsequent particle injection into the DSA.
Plasmas are intolerant to external charges and immedi-

ately restore charge neutrality. Nevertheless, a large and
dense MC needs to build up a strong electric field to restore
charge neutrality. Because of the high rigidity of CRs, their
density in the MC interior increases almost simultaneously
with that in the exterior, as a CR-loaded shock approaches
the MC. However, by contrast with a strongly ionized
exterior, where the plasma resistivity is negligible, the
electron-ion, ion-neutral (and, in the case of very dense
clouds, also electron-neutral) collisions inside the MC,
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provide significant resistivity to the neutralizing electric
current. Therefore, a strong macroscopic electric field is
generated in response to the CR penetration. This field
expels the secondary positrons most efficiently as the
lightest positively charged species—although it also shields
the MC from low-energy CR protons.
The mechanism outlined above implies that negatively

charged primaries and secondaries have much better
chances to stay in a MC than positively charged particles.
When the subshock eventually reaches the MC, the sub-
shock engulfs it, e.g., [30,31]. What was inside of the MC,
is transferred downstream unprocessed by the subshock.
Therefore, the negatively charged particles in its interior
largely evade acceleration. This charge-sign asymmetry of
particle injection into the DSA explains why there is no
p̄=p excess, similar to that of eþ=e−.
It follows that the positron spectrum results from several

interwoven processes. We will consider them separately
and study their linkage. The remainder of the paper is
organized as follows. Section II deals with a spatial
distribution of CR in a shock precursor, their propagation
inside of a MC and electrodynamic processes that the CR
induce there. In Sec. III we discuss and estimate the
distribution of secondary positrons as they come out of
the MC and become subject to the DSA. The spectrum of
accelerated positrons is calculated from low to high
energies, and the nature of the 8 GeV minimum is
elucidated. We briefly discuss some of the alternative
explanations of the eþ=ðe− þ eþÞ excess in Sec. IV,
followed by the Conclusion, Sec. V.

II. INTERACTION OF SHOCK-ACCELERATED
PROTONS WITH MC

A MC illumination by shock-accelerated CR protons
before the shock arrival is crucial for the mechanism of
positron injection into the DSA. The protons begin inter-
acting with the MC when its distance to the subshock
shortens to the CR diffusion length ∼κ=u1, Fig. 1. Here κ is
the CR diffusion coefficient and u1 is the shock velocity.
Generally, κ depends on the CR momentum, e.g., in a
Bohm limit, κ ≃ crgðpÞ=3, where rg is the CR gyro radius.
As κ grows with p, higher energy protons reach the MC
earlier. To understand the electrodynamic response of the
MC to the penetrating CRs, we need to know their number
density depending on the subshock distance. This subject is
addressed in the next subsection.

A. CR spatial profile in unshocked plasma

The simplest assumption to start with is that CRs
penetrate freely into a MC with an implication that their
number density, nCR, inside the MC depends only on the
distance to the subshock, xMC. The assumption is reason-
able for high-energy CRs and small MCs, as the CRs
penetrate the MC more easily and omnidirectionally in this

case. It is generally not valid for large MCs [32], which we
discuss in Appendix A. We also show there that, in a wide
range of conditions, the CR number density can be
approximated by

nCRðxÞ ¼
x0n0CR

x0 þ xMC
: ð1Þ

Here n0CR is the CR density at the subshock (xMC ¼ 0) and
x0 weakly depends on the CR momentum distribution.
Note that the last expression is virtually independent of the
degree of shock modification. However, in modified shocks
the flow velocity gradually decreases from its far upstream
value u1 to u0 ahead of the subshock, where it drops
abruptly to u2 < u0 downstream, Fig. 2. The total shock
compression ratio r ¼ u1=u2 depends on the shock Mach
number and the CR pressure [29] and may be much higher
than the typical value of four. The subshock compression
ratio, rs ¼ u0=u2 can, in turn, be significantly lower than 4.
While the plasma slows down towards the subshock, a

MC proceeds at a higher speed, Fig. 2, because the CR
pressure and the ram pressure of the plasma are insufficient
to slow down dense clouds considerably. Thus, the MCs
encounters a supersonic headwind (for u1 − u0 > Cs, the
sound speed) and a bow shock must form on the shock
side of the MC. However, we will not discuss this further in
the paper. Instead, we focus on the plasma processes in the
MC interior initiated by penetrating CR protons. In what
follows, we assume them to have enough energy to cross
the possible bow shock and the MC-plasma interface
unimpededly.
As we mentioned earlier, plasmas respond promptly to

external charges and readily restore their neutrality due to
high electric conductivity. But when energetic protons
penetrate into a more resistive plasma inside a MC, a

FIG. 1. SNR shock propagating into ISM with MC upstream.
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stronger electric field needs to build up to neutralize the
charge, and there are several neutralization scenarios to
consider. First, because of the electric field, the MC plasma
may suck in external thermal electrons. Again, the MC
plasma is electrically resistive due to a high neutral density
and low temperature. Therefore, the efficiency of this
neutralization is limited, and the electrostatic potential
inside the MC may grow considerably to sustain the charge
neutrality, possibly up to an electric breakdown of the MC
neutral gas with significant pair production [33]. Another
limitation comes from the total flux of thermal electrons
entering the MC. It cannot significantly exceed the value
∼VTen0S, where n0 and VTe are the electron density and
thermal velocity, while S is the effective MC cross section
across the magnetic field. (We neglect the cross-field
particle transport here and below, including that of
the CRs.)
To facilitate our discussion of the MC neutralization, we

introduce a charge budget parameter, η, as a ratio of the MC
charging rate by CR protons to its neutralization rate by
inflowing extraneous electrons and outflowing MC ions:

η ¼
_nCRLMC

VTen0 þ Vini
∼ LMC

LCR
·

u1nCR
VTen0 þ Vini

: ð2Þ

Here _nCR ¼ dnCR=dt is the CR charging rate, ni and Vi are
the density and velocity of the ions at the MC boundaries,
x ¼ %a. We count the x coordinate from the center of
the MC along the field line, Fig. 1, and have denoted
the length of the MC along the field line by LMC. The
characteristic growth time of CRs in the MC (also the CR
maximum acceleration time) is ta ∼ LCR=u1, where LCR ∼
κðpmaxÞ=u1 is the CR precursor scale height and u1 is the
shock velocity. At least initially, the charge neutralizing
current is carried by the thermal electrons (first term in the

denominator). However, it does not increase in response to
the growing electric field as this flux is fixed by the ambient
plasma conditions, not affected by the MC. By contrast, the
ion contribution to the CR neutralization [second term in
the denominator in Eq. (2)] is dynamic and becomes more
important when the electric field accelerates the outflowing
ions. At the same time, the resulting ion depletion inside
the MC may eventually diminish neutralization. It follows
that the parameter η, although small in general, may grow
significantly, especially in strong SNR shocks where
u1 ≫ VTe. The resulting electric field EðxÞ clearly depends
on η so that we include the above aspects in an equations
for E in the next subsection.
The time dependence of nCRðtÞ regulates a MC charging.

We substitute nCRðxÞ from Eq. (1) and assume that the MC
propagates ballistically through the shock precursor; that is,
we can write xMC ¼ −u1t, where −∞ < t ≤ 0 and the
subshock reaches the MC at t ¼ 0. Therefore, nCR grows in
time as

nCRðtÞ ¼ n0CRx0=ðx0 − u1tÞ: ð3Þ

As nCR grows rapidly when the MC approaches the
subshock [the growth stops when nCR reaches
nCRðt ¼ 0Þ ¼ n0CR], the following reaction from the MC
is expected. First, the increase in η may slow down, as the
electric field ejects more ions from the MC. But, when
many of them are expelled and the ion flux Vini cannot
balance the continuing nCR increase, the electric field inside
the MC may exceed the ionization threshold. As a result,
the ni will increase, thus limiting η, or even an electric
breakdown of the gas becomes possible, as mentioned
earlier. We defer this issue to future work and consider in
the next subsection the buildup of an electrostatic potential
inside the MC, as the latter is charged by penetrating CRs
with neglected ionization and recombination.

B. Electrodynamics of CR-MC interaction

For describing a MC response to penetrating CR protons,
we use two-fluid equations for electrons and ions that move
along the x axis (magnetic field direction, Fig. 1) in the MC
interior:

dVi

dt
¼ e

mi
Eðx; tÞ − νinVi

dVe

dt
¼ −

e
me

E − νeiðVe − ViÞ

∂ne;i
∂t ¼ −

∂
∂x ne;iVe;i

ne ¼ ni þ nCR

where

d
dt

≡ ∂
∂tþ Ve;i

∂
∂x :

FIG. 2. Flow profile near a CR modified shock. The line “MC”
shows a MC trajectory on the phase plane. The speed of MC is
considerably higher than that of the flow because of its inertia,
resulting in a weaker slow down by the CR pressure than that for
the main plasma. The drag from the plasma is also assumed to be
not sufficient to slow down the MC significantly.
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Here Vi;e and ni;e are the mass velocities and number
densities of electron and ion fluids, E ¼ −∂ϕ=∂x is the
electric field, and νin and νei are the ion-neutral and
electron-ion collision frequencies. The last equation is
the usual quasineutrality condition replacing the Poisson
equation because LMC exceeds the Debye radius by many
orders of magnitude. On comparing the first two equations,
we neglect the electron inertia term in the second equation,
after which it suggests eliminating the electron velocity Ve
altogether. Furthermore, by taking the difference between
the continuity equations for electrons and ions, and
introducing the CR column density inside the MC, NCR,
by the relation nCR ¼ ∂NCR=∂x, the above system of five
equations may be manipulated into the following two
equations:

dVi

dt
¼ −νinVi þ

me

mi
ð _NCR þ nCRViÞ

νei
nCR þ ni

ð4Þ

dni
dt

¼ −ni
∂Vi

∂x : ð5Þ

The dot over NCR stands for a time derivative. The second
term on the rhs of Eq. (4) is proportional to the electric
field,

Eðx; tÞ ¼ me

e
ν0ei

nCRni
nCR þ ni

!
_nCR
nCR

xþ Vi

"
; ð6Þ

where we have ignored variations of CR density inside the
MC and used the linear approximation for NCR ≈ nCRx,
along with a symmetry requirement, E ¼ Vi ¼ 0 at x ¼ 0
(center of MC). We have also separated the ion density
from collision frequency νei, by introducing the following
parameter:

ν0ei ¼
4

3

ffiffiffiffiffiffi
2π

p e4
ffiffiffiffi
m

p
T3=2
e

Λ ¼ νei=ni

where Λ ∼ 10 is a Coulomb logarithm. The ion-neutral
collision frequency can be written as follows:

νin ¼
8

ffiffiffi
2

p

3
ffiffiffi
π

p σinnn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miT

mnðmn þmiÞ

s

with the ion-neutral collision cross section σin ≈
5 × 10−14cm2. We neglect the electron-neutral collisions,
since σen ≈ 4 × 10−15. These and other parameters,
pertinent to MCs, are summarized, e.g., in [34]. Using
the above approximation of coordinate independent nCR
(NCR ≈ nCRx), we will convert the system given by Eqs. (4)
and (5) into a system of two ordinary differential equations
(ODE) but first, we introduce some dimensionless varia-
bles. It might appear natural to measure time in precursor
crossing times, ta ¼ LCR=u1 ¼ κðpmaxÞ=u21, Fig. 2.

However, since our focus here is on processes occurring
inside the MC, as it traverses the shock precursor, the MC
travel time ta is not the best time unit. Indeed, the main
driver of these processes is the changing nCRðtÞ which is
nearly scale free, Eq. (3). It is, therefore, more convenient to
choose ν−1in for the time unit. Denoting by 2a ∼ LMC the
length of a given field line, to which Eqs. (4) and (5) refer
inside the MC (Fig. 1), we use the following scales of the
remaining variables:

x
a
→ x; νint → t;

Vi

νina
→ Vi;

ni
n0

→ ni;
nCR
n0

→ nCR

where n0 is the initial ion density. Equations (4) and (5)
rewrite then as follows:

∂Vi

∂t ¼ −Vi
∂Vi

∂x − Vi þ νe
nCRni

nCR þ ni

!
_nCR
nCR

xþ Vi

"
ð7Þ

∂ni
∂t ¼ −ni

∂Vi

∂x − Vi
∂ni
∂x ð8Þ

where we introduced the following collision parameter:

νe ¼
me

mi

ν0ein0
νin

:

We need to solve Eqs. (7) and (8) in the domain
−1 < x < 1. For a ≪ LCR, or roughly also for a≲ LCR
and a quasiperpendicular shock geometry, the following
symmetry conditions are suggestive: nið−xÞ ¼ niðxÞ,
Vð−xÞ ¼ −VðxÞ (see also Appendix A). They require
the following boundary conditions at x ¼ 0: ∂ni=∂x ¼ 0;
V ¼ 0. Note that the shock geometry becomes progres-
sively quasiperpendicular towards the subshock by virtue
of the compressed magnetic field component in the shock
plane, Fig. 1. The electric field E will have the same
symmetry properties as V. With the above boundary
conditions, Eqs. (7) and (8) admit the following simple
form of solution:

ni ¼ niðtÞ ð9Þ

V ¼ ψðtÞx ð10Þ

so that Eqs. (7) and (8) reduce to an ODE system:

dψ
dt

¼ −ψ2 − νiψ þ νeni
nCR þ ni

ð _nCR þ nCRψÞ ð11Þ

dni
dt

¼ −ψni: ð12Þ

An assumption nCR ≪ ni greatly simplifies the first equa-
tion of this system and allows us to solve it independently
of the second one. The assumption remains plausible
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during an initial phase of the MC-CR interaction, but it may
be violated at later times when nCR increases while ni
decreases because of the ion outflow. When the condition
holds up, the solution of the second equation can be readily
obtained in terms of ψ , while the first equation makes a
Riccati equation for ψ. After this equation is solved we will
constrain the problem parameters to ensure the condition
nCR ≪ ni.
The solution to Eq. (11) is obtained in Appendix B, and

the transition from the partial differential equations (PDE)
to ODE is justified by a direct numerical integration of the
original PDE system, given by Eqs. (7) and (8). We can
write the solution for ψ as follows:

ψðτ; αÞ ¼ α
τ
− 1þ ταe−τ

Γðαþ 1; τÞ
ð13Þ

where Γ is an incomplete gamma function,

Γðαþ 1; τÞ≡
Z

∞

τ
tαe−tdt

and τ ¼ t0 − t. The dimensionless parameters α and t0 are
defined in Eq. (B3), t0¼ νina=u1, α ¼ ðme=miÞðνeia=u1Þ×
ðn0CR=niÞ. The density depletion of the MC ions can now be
obtained from Eq. (12):

niðt ¼ 0Þ
niðt ¼ −∞Þ

¼
$Z

∞

t0
ðτ=t0Þαet0−τdτ

%−1
ð14Þ

where t ¼ −∞; 0 refer to the far upstream ion density, ni,
and its value when the subshock intersects the MC.
Whether the above ratio can be considerably smaller than
unity, thus possibly violating the assumption nCR ≪ ni,
depends on the parameter α=t0. This is because a saddle
point on the phase integral in Eq. (14) is on the integration
path for α > t0, thus making a large contribution to the
integral. So, one can estimate the integral as follows:

Z
∞

t0
ðτ=t0Þαet0−τdτ ¼

&
1þ α=t0; α=t0 < 1
ffiffiffiffiffiffiffiffi
2πα

p
ðα=t0Þαet0−α; α=t0 > 1

:

To reconstruct possible scenarios of MC neutralization,
we take a closer look at the parameter α=t0 in Eq. (B3).
Assuming for simplicity that Te ∼ Ti inside the clump, the
following estimate can be obtained:

α
t0
∼
!
1eV
Te

"
2 n0CR
nn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

mi

!
mn

mi
þ 1

"
me

mi

s

:

Unless the neutral density nn and electron temperature Te
in the MC interior are fairly low, the above parameter is not
larger than 1, so the density depletion, Δni=ni ≃ α=t0 ≪ 1,
remains insignificant during the MC travel through the
shock precursor. This estimate validates our assumption
nCR ≪ ni and thus the solution given by Eq. (13).

The weak effect of accelerated CR protons on the MC
ion density does not mean that the charge neutralizing
electric field also remains weak. The electric field can be
determined from Eqs. (6), (10), and (13), so we can write it
as follows:

Eðx; tÞ≃mi

e
aν2in

xα
ðt0 − tÞ2

$
1þ α

t0 − t

%

where E is given in physical units, while x, t0, and t are
still dimensionless, stemming from the expansion of
ψðα; tÞ for small α=t0. The second term in the brackets
corresponds to the ion contribution to electric field gen-
eration [second term in the brackets in Eq. (6)]. As long as
Δni=ni ≃ α=t0 ≪ 1, it can be neglected. The electric field
reaches its maximum at the edge of MC at the moment of
subshock encounter, t ¼ 0. It can be represented as

Emax ≃me

e
u1νei

n0CR
ni

: ð15Þ

There are two potentially significant effects of the electric
field. First, it may cause a runaway acceleration of thermal
electrons. To assess this possibility, one needs to compare
Emax with a critical (Dreicer) field, above which many
electrons from the thermal Maxwellian gain more energy
from the field between collisions than they lose after the
collisions [35]. From the last formula we obtain

Emax

Ecrit
∼

u1
VTe

n0CR
ne

: ð16Þ

We observe that the collision frequency quite naturally
cancels out in this ratio. It thus depends only on the ratio of
the convective CR flux to that of the thermal electrons. It
should also be noted that to produce a significant effect,
Emax does not need to be close to Ecrit. Even if the above
ratio is low, an exponentially small number of runaway
electrons [36] on the tail of their velocity distribution can
initiate an ionization process. Once started, it may develop
into a gas breakdown at fields significantly below the
impact ionization threshold [33]. The runaway breakdown,
actively studied in terrestrial thunderstorms, requires a seed
population of fast electrons, sporadically produced by
ionizing CRs [37]. In a MC ahead of a SNR shock such
population is readily available, e.g., from shock-accelerated
electrons and secondary electrons inside the MC. Another
possible effect associated with the runaway process is an
electromagnetic cascade that may result in a pair produc-
tion which would further increase the number of positrons
injected into the DSA. These phenomena, expected to
occur in strong electric fields, will react back on the field
generation by increasing the neutralizing current. The
runaway electrons, in particular, may carry most of that
current.
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The electrostatic potential that obviously has a maximum
in the middle of the MC may partially screen the MC
interior from the penetrating CR, particularly a low-energy
and, therefore, more intense part of their spectrum. The
maximum potential is proportional to the MC half-length,
a. To determine the CR penetration into the MC, one needs
to compare this potential with the proton rest energy,mpc2.
So, from Eq. (6) we obtain

eϕmax

mpc2
∼

a
1pc

u1
c

nCR
1cm−3

!
1eV
Te

"
3=2

: ð17Þ

Similarly to the comparison of the electric field with the
critical Dreicer field in Eq. (16), the last estimate also
places the field potential in a critical range, this time,
possibly close to the relativistic proton energy. A one-
parsec size MC does not appear implausible, as it would be
of the order of the gyroradius of a PeV (knee energy)
proton. Such a MC occupies only a u1=c ≪ 1 fraction of
the entire CR precursor, assuming Bohm diffusion regime.
The above estimates indicate that the electric field may
grow strong enough to react back on the penetration of low-
energy CRs into the MC and neutralization of the CR
charge by a plasma return current. These aspects of the CR-
MC interaction require a separate study. Here, we assume
the relevant parameters constrained as to keep the ratios in
Eqs. (16) and (17) somewhat smaller than 1.

III. SPECTRUM OF SHOCK-ACCELERATED
POSITRONS

In Sec. II B we have considered relevant MC processes
driven by penetrating CRs. We have found the CR density,
MC electrostatic potential, and ion outflow velocity
increasing explosively, ∝ ðt0 − tÞ−1, towards the subshock
encounter. Therefore, the positron expulsion from the MC
will culminate at the time of encounter, thus peaking their
injection into the DSA process discussed further in this
section.

A. Positron Injection into DSA

Being interested in a particle injection from many MCs,
occasionally crossing the shock, we may consider the
expelled positrons as injected into the DSA at a time-
averaged rate Qðp; xMCÞ. It decays sharply with xMC, the
distance from the subshock, according to Eq. (1), which is
more convenient to use here than its time-dependent
analog, given in Eq. (3). In what follows, we will write
x, instead of xMC which should not cause any confusion
with the notation of Sec. II.
A momentum distribution of injected positrons is deter-

mined by the history of their production in, and outflow
from, a MC. At large distances from the subshock, only the
most energetic CRs penetrate the MC, while low-energy
CRs do not reach it. On the other hand, short before shock

crossing, the low-energy CRs cannot freely penetrate the
MC, because of the induced electric field. Thus, bearing in
mind that positrons receive only a few percent of the energy
of parent protons, it is not unreasonable to expect QðpÞ to
have a relatively broad maximum near or somewhat below
the momentum eϕmax=c, Eq. (17). Given relatively cold,
e.g., Te ∼ 100 K, electrons in the MC, this maximum is
likely to be in a sub-GeV range. Here we orient ourselves
towards a cold neutral medium with nH ≳ 30 cm−3 and the
filling factor fV ∼ 0.01 [31,38]. The value of nHfV may
substantially exceed its counterpart in the ambient plasma.
Positrons, generated in CR-MC gas collisions are con-

fined in the MC for a time τconf ∼ a2=κðpÞ, to be compared
with the precursor crossing time (also CR acceleration
time) τa ∼ κðpmaxÞ=u21 ∼ LCR=u1. Here p and pmax denote
the positron and maximum CR (proton) momentum,
respectively. Strictly speaking, the particle diffusivities κ
are different, as they refer to different media (MC
and ionized CR precursor). Nonetheless, for a simple
estimate below, we may adopt the Bohm scaling for both.
If τconf=τa ≫ 1, which translates then into p=pmax ≪
a2=L2

CR, low-energy secondary positrons accumulated in
the MC over the precursor crossing time will stay inside the
MC. Therefore, they will avoid the DSA process, along
with the most of negatively charged particles. Indeed, a
strongly weakened subshock engulfs the MC without
shocking its material over the MC crossing time [30,31].
To a certain extent, this also relates to the positively charged
secondaries and spallation products, diffusively trapped in
the MC. Therefore, they do not develop spectra similar to
that of the positrons.
Two considerations help to elaborate the above con-

straint on the positron momentum p. First, a significant
modification of the shock structure requires a proton cutoff
momentum pmax ≳ 1 TeV, while our interest in positrons is
limited to p < 500 GeV (data availability). Second, the
positrons receive, on average, only about 3 percent of the
energy of parent CRs. These considerations render
p=pmax ≪ 1 as a strong inequality. We, therefore, conclude
that except for very small MCs, the condition p=pmax ≪
a2=L2

CR is fulfilled and most of the early generation of
positrons, produced by high-energy protons, will stay
inside the MC. However, in parameter regimes when the
electric field is very strong, this conclusion may be violated
but we assume that it is not.
On entering the subshock proximity, the CR number

density sharply increases by GeV particles. To some extent,
these particles are screened by a MC electric field which
reaches its maximum at the MC’s edge. Therefore, they
generate secondary e% and, for that matter, p̄, at the
periphery of the MC. The edge electric field then expels
positively charged secondaries (eþ) and sucks in negatively
charged ones, such as e− and, to some extent, p̄, even
though they are considerably more energetic for kinematic
reasons. Based on the calculation of the field in Sec. II B,
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the typical energy of expelled positrons should not exceed
1–2 GeV. This estimate is consistent with that presented
earlier in this subsection.
Now we turn to the acceleration of injected positrons. It

should be noted, however, that some secondary negatively
charged particles, such as p̄, can still be injected along,
particularly if the MC is sufficiently small and the maxi-
mum field potential is thus not high enough to suck them in.
In this paper, however, we do not consider their contribu-
tion to the integrated CR spectrum produced in a SNR of
the type considered. Such consideration would require us to
address the question of the MC distribution in size.

1. Shock acceleration of positrons

Upon expulsion from a MC, positrons undergo the DSA.
As the shock is strongly modified, the acceleration starts in
its precursor. Because of the flow convergence, ∂u=∂x ≠ 0,
particles gain energy without even crossing the subshock
[39]. On the other hand, most of the positrons are released
from the MC near the subshock. Thus, at lower energies,
their spectrum will be dominated by the subshock com-
pression ratio, rs ¼ u0=u2 rather than by the precursor
precompression, u1=u0. Therefore, the spectral index must
be q ¼ qs ≡ 3rs=ðrs − 1Þ and the spectrum feþ ∝ p−qs .
By gaining energy, particles sample progressively larger

portions of shock precursor with higher compression ratios,
Fig. 2, which makes their spectrum harder. On the other
hand, as they also need to diffuse across larger portions of
the precursor, the acceleration slows down which makes the
spectrum softer. Asymptotically, these trends balance each
other, but the balance is critically supported by accelerated
protons, and their pressure needs to be included in the
equations for the shock structure. In the case of very strong
shocks (M → ∞) with sufficiently high maximum energy, a
universal spectrum p−3−σ=2 establishes [29]. Here σ is the
index of particle diffusivity, κ ∝ pσ with σ ¼ 1 for Bohm
diffusion.
Consider now the ratio of positron spectrum to the

spectrum of electrons produced in unmodified strong
shocks with a typical spectrum ∝p−4. This ratio, that is,
p4feþðpÞ will have a decreasing branch at low momenta,
since feþðpÞ ∝ p−qs with qs > 4, and an increasing branch
at high momenta, where the positron spectral index tends to
3.5. The remainder of this section deals with the calculation
of the positron spectrum described above by solving the
diffusion-convection equation, and comparisons with the
AMS-02 data.
It is convenient to place the upstream medium in the

x > 0 half-space, with the subshock at x ¼ 0, but use
positive quantities in describing the flow velocity. In the
subshock frame, the physical flow velocity starts from −u1
at x ¼ ∞, decreases gradually to its value −u0 just ahead of
the subshock, and then jumps to its downstream value −u2:
0 < u2 < u0 ≤ uðxÞ < u1, Fig. 2. We will ignore the
inclination of the magnetic field line to the shock normal

(i.e. x direction), which can be effectively included by
redefining the diffusion coefficient [40].
Although the dynamics of an individual MC is essen-

tially time dependent (Sec. II B), we are interested in an
average positron input from an ensemble of MCs.
Therefore, we consider a steady state problem with a
stationary injection of positrons at the subshock. The
injection rate is then given by a time averaged source
Qðx; pÞ, discussed in Sec. III A. The distribution of
accelerated positrons is governed by the familiar convec-
tion-diffusion equation

u
∂f
∂x þ κðpÞ ∂

2f
∂x2 ¼

1

3

∂u
∂x p

∂f
∂p −Qðp; xÞ; ð18Þ

with a standard normalization of the positron number
density:

neþðxÞ ¼
Z

fðx; pÞp2dp:

The momentum dependence of the positron diffusion
coefficient κ can be taken to be in an ultrarelativistic
Bohm regime, κ ¼ κ0p, with κ0 ¼ const.
First, we consider the solution to Eq. (18) for moderate

values of p, assuming that the positron diffusion length,
κðpÞ=u0 ≪ LCR, where, LCR ∼ κðpmaxÞ=u1 is the precursor
scale, determined by the maximum energy of accelerated
protons. Hence, we may expand the flow velocity
upstream, uðxÞ ¼ u0 þ u0x, for x ≥ 0 with u0 ¼ const. At
the same time, we will focus on particle momenta that are
higher than the injection momentum, so we drop the
injection term Q in Eq. (18) and include its effect on the
solution in form of normalization of f. In particular,
the value fðx ¼ 0; p ¼ pinjÞ, where pinj is defined as
Qðp > pinjÞ ¼ 0, can be expressed through injection rate
Q approximately as

fð0; pinjÞ ≈
1

u0

Z
∞

0
Qdx: ð19Þ

We have assumed here that, in a steady state considered,
injection is balanced by convection at low momenta. For
that reason, we have neglected diffusion and acceleration
terms, according to κ=u0linj ≪ 1 and u1linj=LCRu0 ≪ 1.
More accurate determination of the normalization is not
worth the effort, as there are larger uncertainties in the value
of Q, associated with our limited knowledge of the MC
density, for example. The main objective here is to
determine the spectral shape of eþ which does not depend
on the normalization, as the shock modification is produced
by protons, not positrons.
To lighten notation, we make use of invariant properties

of Eq. (18), and replace κðpÞ ¼ κ0p → p, which can easily
be reversed by the transform p → κ when the equation is
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solved [41]. Note that a more general scaling of κ with p,
such as κ ∝ pσ can also be accommodated by a simple
change of variables/coefficients. Adhering to the Bohm
scaling, and taking all the above considerations into
account we rewrite Eq. (18) as

ðu0 þ u0xÞ ∂f∂x þ p
∂2f
∂x2 ¼

1

3
u0p

∂f
∂p : ð20Þ

This equation can be readily solved by applying a
Laplace transform

fλðpÞ ¼
Z

∞

0
fðp; xÞe−λxdx;

which yields

u0
!
λ
∂fλ
∂λ þ p

3

∂fλ
∂p

"
− ðu0λþ λ2p − u0Þfλ

¼ −ðu0 þ λpÞf0 − pf00: ð21Þ

Here we denoted f0ðpÞ ¼ fðx ¼ 0; pÞ and f0xðpÞ ¼
∂f=∂xjx¼0þ. The last two functions are related through a
jump condition at the subshock at x ¼ 0. Integrating
Eq. (18) across the subshock, and taking into account
the downstream stationary solution fðp; xÞ ¼ f0ðpÞ,
x < 0, we obtain

f0x ¼
Δu
3

∂f0
∂p : ð22Þ

The solution of Eq. (21) can be found, by integrating along
its characteristics on the λ, p plane, λ=p3 ¼ const, and
using the jump condition in Eq. (22)

fλðpÞ ¼
3

u0p3
eψλðp;pÞ

Z
∞

p
p02dp0e−ψλðp0;pÞ

×
$!

u0 þ λ
p04

p3

"
f0ðp0Þ þ Δu

3
p0 ∂f0ðp0Þ

∂p0

%
ð23Þ

where

ψλðp0; pÞ ¼ λ
u0
p03

p3

!
u0 þ

3

7
λ
p04

p3

"
: ð24Þ

Using this solution, the function fðx; pÞ can be found by
inverting the Laplace transform:

fðx; pÞ ¼ 1

2πi

Z
i∞þb

−i∞þb
eλxfλðpÞdλ ð25Þ

where the constant b must be taken larger than the real
parts of all the singularities, λs, of fλ on the λ plane,
b > ℜλs. Clearly, a formal solution of Eq. (20) given by

Eqs. (23) and (25) still depends on an unknown function
f0ðpÞ, the spectrum at the subshock. This is because out of
the two boundary conditions required to solve Eq. (20), we
used only one, given by Eq. (22), which connects f0x with
f0ðpÞ. The second condition is fðx; pÞ → 0 for x → ∞. To
fulfill it, all possible singularities of fλ should be limited to
the half-plane ℜλ < 0.
An inspection of the integrand in Eq. (23) shows that,

under a proper behavior of f0ðpÞ at p → ∞, fλ is bounded
for λ > 0. So, we focus on a pole at λ ¼ 0 and upon
extracting the term

fλ ∼
SðpÞ
λ

from Eq. (23), the condition SðpÞ ¼ 0 will need to be
imposed. To calculate SðpÞ, let us expand fλ in a series of
u0. Physically, u0 ∼ u21=κðpmaxÞ, where pmax is the maxi-
mum energy of CR protons, shaping the flow profile
upstream by their pressure. The positron momenta, we
are considering here, are much lower, so we may take a
limit pmax → ∞, that is u0 → 0. A more specific constraint
on u0 will emerge below. Observe that the behavior of fλ at
λ → 0 is controlled by the contribution of large p0 in the
phase function ψλ that can be obtained by expanding S in
small u0. The first two terms of this expansion yield the
following equation for f0ðpÞ:

SðpÞ ≈ f0 þ
p
qs

∂f0
∂p −

u0p2

3u20

!
1þ 6

qs
þ 2

p
qs

∂
∂p

" ∂f0
∂p

¼ 0: ð26Þ

Here qs ¼ 3u0=Δu is a spectral index corresponding
to the subshock compression, qs ¼ 3rs=ðrs − 1Þ, where
rs ¼ u0=u2. As expected, for u0 → 0 we obtain from
Eq. (26) a familiar test-particle solution, f0 ∝ p−qs . It
holds up for the finite u0 but only for relatively low
momenta, u0κðpÞ=u20 ≪ 1, or p=pmax ≪ u20=u

2
1. We have

returned to the physical units by replacing p → κðpÞ and
used the above estimate for u0. In fact, the function SðpÞ is
expanded in αp < 1, where

α ¼ u0

3u20
ð27Þ

(not to be confused with α in Sec. II B). So, the first two
terms in Eq. (26) represent the limit αp → 0, while the
other terms yield the first order correction in this variable.
We will use this correction to match the solution of Eq. (26)
for f0ðpÞ with an exact solution of Eq. (20) in the region of
large p, where it becomes independent of the subshock
compression. Note that the latter is determined by the scale
and flow precompression in the CR shock precursor.
To solve Eq. (26) we introduce a new independent

variable
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y ¼ 1=4αp

and rewrite the equation as follows:

d2f0
dy2

þ 2

!
1 −

qs þ 2

4y

"
df0
dy

−
2qs
y

f0 ¼ 0: ð28Þ

It is convenient to transform the last equation to a canonical
(in this case Whittaker) form by introducing a new
dependent variable instead of f0ðyÞ

g ¼ f0ey−ðqsþ2Þ ln y=4

which obeys the equation

d2g
dy2

−Qg ¼ 0 ð29Þ

where

Q ¼ 1þ 1

2y
ð3qs − 2Þ þ qs þ 2

16y2
ðqs þ 6Þ:

Since we will use the y ≫ 1 asymptotic limit of this
equation, instead of expressing the solution of Eq. (29)
through Whittaker functions, we apply the WKB approxi-
mation. For the same reason, the 1=y2-term in the last
expression can be omitted. Moreover, for y > 0, Eq. (29)
has no turning points (Q ≠ 0, since qs > 4), the following
solution can be used for all y≳ 1, and it tends to an exact
one for y ≫ 1:

g ¼ C1Q−1=4½e
R ffiffiffi

Q
p

dy þD1e
−
R ffiffiffi

Q
p

dy';

where C1 and D1 are arbitrary constants. It should be noted
that as Q ∼ 1 for the values of y≳ 1, where we will match
this solution to the high momentum solution that we obtain
below, both linearly independent solutions in the last
formula are still of the same order. This situation is different
from more customary WKB analyses whereQ ≫ 1 and the
matching procedure consists in linking linearly indepen-
dent solutions of the same equation (29). One of them
becomes subdominant and cannot be matched without
continuing to the complex y plane (so-called Stokes
phenomenon). By contrast, we match here solutions of
different equations, that is Eqs. (20) and (29).
Returning to the original variables f0 and p, from the last

relation we obtain

f0ðpÞ ≈ C2p−qs
'
1þD2e−1=2αpp3qs=2−1

(
ð30Þ

where C2 and D2 are still arbitrary constants. The under-
lying physics behind the last result is obvious. For low
particle momenta, corresponding to a small diffusion length
Ldif ∼ κ=u0,

αp ¼ u0κðpÞ
3u20

∼
LdifðpÞ
LCR

u1
u0

≪ 1; ð31Þ

particles “feel” only the subshock compression, so their
spectral index is close to qs ¼ 3u0=ðu0 − u2Þ [first term in
Eq. (30)]. With growing momentum, Ldif also grows and
particles sample progressively larger portions of the shock
precursor, thus feeling higher flow compression. Their
spectrum becomes harder, which is reflected in the second
term in Eq. (30) that begins to dominate at larger p.
However, by the nature of the expansion in αp < 1, this
solution cannot be continued to momenta αp≳ 1, and has
to be matched to a proper solution of Eq. (20).
An exact asymptotic solution valid in the regime of

strong shock modification, u1 ≫ u0, and for large p is
readily available for the proton spectrum, [42]. Its positron
counterpart must follow the proton spectrum at ultra-
relativistic rigidities and can be extracted from the asymp-
totic solution. However, it appears easier and more
persuasive to obtain the positron spectrum directly from
the general convection-diffusion Eq. (18), using a resolving
substitution used in the asymptotic solution. We only need
to specify the flow profile uðxÞ. In the above reference,
uðxÞ was self-consistently obtained from the momentum
flux conservation across the shock precursor. Here, the
positron solution is essentially a test-particle one which,
however, must have the same asymptotics as the proton
solution for p ≫ mpc. For the proton spectrum, the linear
uðxÞ approximation, that also reduces Eq. (18) to (20), is
acceptable for p ≪ pmax in the Bohm regime, κ ∝ p [29],
which we adopt here. Physically, these particles fall into an
intermediate energy range and sample larger flow com-
pressions than that of the subshock but smaller than the
total compression. Therefore, the flow profile can be
approximated by a linear function of x.
The following substitution resolves Eq. (18)

fðx; pÞ ¼ FðpÞe−qbðpÞΨðxÞ=3κðpÞ ð32Þ

which can be shown by direct substitution. Here we have
introduced the flow potential Ψ, according to u ¼ ∂Ψ=∂x,
which for the linear flow profile can be represented as

Ψ ¼ u20
2u0

!
1þ u0

u0
x
"

2

: ð33Þ

The spectral index qbðpÞ is defined in a standard way:

qb ¼ −
p
F
∂F
∂p :

Note that unlike f0ðpÞ, used before, FðpÞ is not exactly the
spectrum at the subshock since Ψð0Þ ≠ 0. It is easy to
verify that the solution in Eq. (32) satisfies Eq. (20) for the
following choice of qb and F:
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qbðpÞ ¼
7

2

p7

p7 − p7
0

and FðpÞ ¼ Aðp7=p7
0 − 1Þ−1=2:

ð34Þ

The arbitrary constant p0 < p in this solution may be
used for matching purposes. It is, however, clear that p0

should be close to a matching momentum, in which vicinity
the solutions given by Eqs. (30) and (32) coincide. Indeed,
as f0ðpÞ very quickly becomes scale invariant, that is, f0 ∝
p−3.5 for p > p0, p0 should be well inside the overlapping
region between the two asymptotics, just to make a smooth
matching possible. For the comparison with the AMS-02
data below, it is important to realize that p0 also depends on
the degree of flow modification through the parameter α in
Eq. (27) that, in turn, enters the low-momentum solution in
Eq. (30). The normalization constant A in Eq. (34) remains
arbitrary at this point, which we will also use for matching.
Altogether, we have three free parameters to adjust for
matching: B in Eq. (30), and A with p0 in Eqs. (32) and
(34). To minimize the number of matching parameters, we
(temporarily) scale p0 out of the problem:

s ¼ p
p0

:

Using this variable, and combining Eqs. (30), (32), and
(34), we obtain the following compound solution:

f0ðsÞ ¼
&
s−qs þ Be−1=2βssqs=2−1; s≲ 1

Aðs7 − 1Þ−1=2e−7s6=36βðs7−1Þ; s≳ 1
: ð35Þ

In place of the parameter α in Eq. (30) we introduced
here a new parameter β ¼ αp0. We normalized the low-
momentum asymptotics arbitrarily, ≈s−qs , bearing in mind
that the actual normalization factor is proportional to the
injection sourceQ. Its intensity, in turn, depends on the MC
density, which remains a free parameter.
The easiest way of matching the above two expressions

is to plot them and adjust the parameters A, B, and β to
make the transition as smooth as possible. Note that, as we
adjust three parameters, the result is smooth to the second
derivative. This means that we match the normalization, the
index and the curvature of the spectrum. The result is
illustrated in Fig. 3. As the parameter p0 was scaled out of
the matching process, the obtained matching parameters A,
B, and β are valid for a range of p0. By varying p0 we will
model the time-dependent shock conditions (degree of its
modification, Mach number, and the proton maximum
energy). This flexibility of the compound solution will
be useful for the comparison with AMS-02 data in the next
subsection.
To conclude this subsection, a more rigorous matching

would address an intermediate solution expansion asymp-
totically approaching each of the solutions given by

Eq. (35). However, the following argument renders this
more elaborate approach unnecessary. As we mentioned,
shock parameters, such as α and p0, slowly change in time,
as do the maximum momentum of accelerated protons and
shock Mach number. The positron spectrum should then be
obtained by integrating over the active live time of a source
(SNR). This variation would affect the overall spectrum
more significantly than any further improvement of the
matching procedure could.

B. Comparison of AMS-02 data with the solution
of convection-diffusion equation

The positron energy spectrum, recently published in the
form of an eþ=ðeþ þ e−Þ fraction by the AMS-02 team [4]
is highly revealing of the underlying acceleration mecha-
nism. This fraction is almost certainly invariant under
transformations of the individual e% spectra due to other-
wise very uncertain propagation effects which often cause
disagreement between models. The unique opportunity to
study the acceleration mechanism is in that the AMS-02
data are likely to be probing into the positron fraction
directly in the source. The difference in charge sign is
unlikely to be important en route. We will further discuss
the propagation aspects in the next section.
Let us break down the leptonic components comprising

the positron fraction into the following three groups:
(1) positrons and (2) electrons produced in the SNR under
consideration, with fe% being their momentum distribu-
tions, and (3) electrons produced in all other SNRs, with
fBe− being a (background) spectrum thereof. The AMS-02
positron fraction can then be represented by the following
ratio:

FIG. 3. Matching of low (squared red points) and high (round
blue points) momentum solutions of Eq. (20) given by Eq. (35).
An overlap region at s ≳ 1 ensures a smooth transition between
the two asymptotics. They deviate from the actual solution at
high/low momenta. The matched asymptotic (compound), uni-
formly valid solution is shown by the solid line. The matching
parameters in Eq. (35) are β ¼ 0.95, B ¼ 0.05, and A ¼ 0.9785.
The subshock compression, rs ¼ 3, so qs ¼ 4.5.
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F eþ ≡ feþ
fBe− þ fe− þ feþ

: ð36Þ

We postulate that the background electrons are diffusively
accelerated in strong but unmodified shocks. For the lack of
information about the distances to the sources that con-
tribute to the above positron fraction, we also assume that
the background electrons propagate the same average
distance as e% (1),(2), so their equivalent spectrum [were
it produced at the e% locale (1),(2)], can be taken to be
fBe− ∝ p−4. Because both fe% result from a single shock
acceleration, their momentum profiles above the injection
momenta are identical. But the normalization factors are
clearly different. In this paper, we considered only the
positron injection, so the ratio feþ=fe− is a free parameter
that depends on the density of MCs and electron injection
efficiency. On dividing the numerator and denominator of
the fraction in Eq. (36) by fBe− ∝ p−4, and introducing a new
function f0ðpÞ and e% normalization by the following
relations: feþ ¼ Cf0ðpÞfBe−p4, fe− ¼ ðζ − CÞf0ðpÞfBe−p4

instead of Eq. (36), we obtain

F eþ ¼ Cf0p4

1þ ζf0p4
: ð37Þ

Here C is a normalization constant that absorbs input
parameters of the model, such as the MC density and their
filling factor in the SNR environment, distance to the SNR,
and intensity of the background electrons, local to the SNR.
We are free to adjust the factor C to fit the positron fraction
to the AMS-02 data without compromising the model. The
parameter ζ quantifies the e% combined contribution from
the SNR, also relative to the background electron spectrum.
In the present model, the parameter ζ, being related to C, is
also indeterminate, partly for the above reasons, but more
importantly, because we do not know the number of
injected positrons relative to the number of injected
electrons. This number can, in principle, be calculated,
but the absence of a reliable electron injection theory is a
serious obstacle for such calculations. There is also an
implicit parameter, p0, introduced in high-energy part of
the positron distribution in Eq. (34). By contrast to C and ζ,
p0 is a purely technical parameter here. It can be obtained
from a fully nonlinear acceleration theory [29,42], where
the shock structure is calculated self-consistently with the
proton acceleration. As we mentioned earlier, such a
calculation would require the following three acceleration
parameters: the Mach number, proton cutoff momentum,
and proton injection rate.
Here, we are primarily interested in lepton acceleration

and treat them as test particles in a shock structure
dynamically supported by the pressure of accelerated
protons. Therefore, the role of the protons is encapsulated
in the parameters p0 and rs (or, equivalently, qs), that
can be recovered from the above references. As these

parameters still depend on the above three shock character-
istics, which change (albeit slowly) in time, the parameter
p0 also changes in time according to the Sedov-Taylor blast
wave solution and particle acceleration rate. The resulting
spectrum of the positron fraction can then be obtained by
integrating over p0 and other shock parameters, following
the approach suggested, for example, in Ref. [14] in
studying the p=He anomaly. In this paper, however, we
take a simpler route. First, we fix the subshock compres-
sion, as rs is almost universally consented to be self-
regulated at a nearly constant level in the range rs ¼
2.5 − 3 during the efficient phase of acceleration. Namely,
had rs dropped below this range, the proton injection would
be suppressed, so the shock modification diminished, thus
driving rs towards the unmodified value of rs ¼ 4.
Conversely, should rs rise above the range of 2.5–3, the
injection will be increased, thus resulting in a stronger
shock modification and reduced rs. A possible additional
contribution from MCs upstream may alter this simple
feedback loop. To avoid further complications, we do not
include it but note that the enhanced proton injection
facilitates the efficient (nonlinear) shock acceleration
regime.
The effect of changing p0 can be modeled by averaging

the calculated positron fraction over a range of p0 variation
during the acceleration history. This range can be inferred
from a set of solutions of a fully nonlinear acceleration
problem presented for different Mach numbers and pmax,
e.g., in Fig. 5 of Ref. [29]. As may be seen from it, the
spectral index of strongly modified shocks crosses q ¼ 4
(which corresponds to the minimum in F eþÞ in the range of
5−10 GeV=c, weakly depending on the above acceleration
parameters. Based on our matching procedure in the
preceding subsection, the minimum should be at
≈1.2 · p0. So, we will compare our results with the
AMS-02 data by averaging F eþ over the range of p0,
suggested by the nonlinear shock acceleration theory.
However, it is instructive to start with a fixed value of
p0, using two different sets of constants C and ζ, character-
izing two different e% ratios in the source.
Shown in Fig. 4 is the positron fraction for the matching

parameters β, A, and B indicated in Figs. 3 and 4, for two
different combinations of parameters C and ζ, representing
a high (ζ ¼ 5) and low (ζ ¼ 9) contribution of the back-
ground electrons, respectively. The predicted saturation
level of F eþ ¼ C=ζ at p → ∞ is 0.16 and 0.25, respec-
tively. The current AMS-02 high-energy points appear to
saturate near the lower boundary of this range. The
parameter p0 is fixed at p0 ¼ 6.33 in both cases, thus
placing the minimum at ≈8 GeV=c. This value coincides
with the AMS-02 minimum and is well within the range
predicted in [29].
The first thing to note about Fig. 4 is that the minimum

is too sharp compared with the AMS-02 data. This is
clearly due to an implausible assumption of a fixed p0 that
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we made to illustrate the mixing effects of e%. Since p0

varies in time only within a relatively narrow range, we can
model the effect of its variation by calculating the positron
fraction at the minimum and maximum values of p0.
The mean value of these two fractions is then a good
proxy for a time integrated spectrum, to be compared with
the AMS-02 data.
The effect of p0 variation is shown in Fig. 5, which

indeed demonstrates a considerably better agreement. A
significant deviation from the AMS-02 data points begins
only at high energies, where they are strongly scattered and,
also, have increasingly large error bars. The theoretical
predictions can also be improved in this area by using the
full nonlinear solution, discussed above. Such a solution
shows a more gradual transition to the asymptotic p−7=2

spectrum than the one used here. Recall that the latter was
based on a linear profile of the flow velocity upstream. This
approximation becomes inaccurate for high-energy par-
ticles which reach far upstream, where the flow velocity
saturates at u ¼ u1. However improving the full nonlinear
solution, it is unlikely to reconcile with the AMS-02 excess
above the analytical solution in the range 100–300 GeV.
The present model predicts F eþ to saturate at

F eþð∞Þ ¼ C=ζ ≈ 0.17, and fe−=feþ ≈ 4.7 as p → ∞,
which is consistent with the AMS-02 measurements
(although errors are significant in this range). This satu-
ration level is well above the strict upper bound of 25%
permissible for the SNR contribution to the total positron
excess. Such limit has been placed in Ref. [43] to avoid
conflicts with heavier secondaries accelerated in SNR. This

limitation strictly applies to the acceleration of secondary
positrons generated by pp collisions outside of MCs,
where they have no advantages over heavier secondaries,
such as boron, and particularly electrons and antiprotons.
Although it does not restrict the present mechanism of
positron generation, it can be used to constrain the MC
density and filling factor required for the excess. It should
be noted that other studies [8,22] admit larger contributions
from SNR by using CR diffusivity more rapidly growing
with momentum. The issue is expected to be settled after
the AMS-02 data on p̄=p and B/C are published.
The obtained saturation level is way below 70%,

predicted by the authors of Ref. [23] assuming a discrete
distribution of CR sources (see also [44]). Their disagree-
ment with the results cited above appear to be in part due
to the production of secondaries in the “cocoon” region
near the SNR, included in [23]. However, as was shown in
[45], the near zone of the SNR requires a different approach
to CR propagation. It is based on a CR self-confinement
supported by the emission of Alfven waves, rather than
commonly used test-particle propagation. This is necessary
to remain consistent with the well-established idea of
bootstrap acceleration in the SNR shock waves.
The saturation of the positron fraction in Eq. (37)

requires the background electron spectrum fBe− to remain
softer than the fe% at high energies. If there were another
electron contribution with a harder than fe% spectrum, but
with lower intensity, it would reveal itself at higher energies
and the positron fraction F e% would begin to decline again,

FIG. 4. Positron fraction, represented as a ratio of the eþ

spectrum to the sum of eþ and e−, as given in Eq. (37). A fit of the
AMS-02 data to the solution of Eq. (20) given by Eq. (35) with
β ¼ 0.95, p0 ¼ 6.33, A ¼ 0.9785, B ¼ 0.05 and the mix of
species represented by Eq. (37) is shown for the two sets of
normalization and e% mixing constants, C and ζ. They corre-
spond to a high and low electron contribution to the mix, with
ζ ¼ 9 and ζ ¼ 5, respectively. To comply with the AMS-02 at
the spectrum minimum, we fixed the normalization constant at
C ¼ 1.45 and C ¼ 1.25 for these two cases.

FIG. 5. The same as Fig. 4 but plotted for an averaged shock
modification: instead of the specified shock modification param-
eter p0 ¼ 6.33 used in Fig. 4, two different values of p0 are
chosen, p0;1 ¼ 5.2 and p0;2 ¼ 8.0. Shown is the positron frac-
tion, obtained as an average between those obtained for p0 ¼ p0;1
and p0;2 (solid line). The dashed line extends this solution to
higher energies, using a simplified calculation with a fixed value
of p0 ≈ ðp0;1 þ p0;2Þ=2, because the effect of p0 dispersion is not
significant at high energies. Parameters in Eq. (37) are fixed at
C ¼ 0.061 and ζ ¼ 0.35, so that the saturation level predicted by
Eq. (36) is ≈0.17, shown in the upper right corner. AMS-02 error
bars added, where they are significant (E > 30 GeV).
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thus creating a maximum at high energies, instead of
leveling off. There are no indications for such an additional
electron component as yet, so we do not consider this
possibility. Therefore, the positron fraction in Eq. (37) has
no extrema other than those of the function f0p4. As we
discussed, apart from the maximum below the cutoff, it has
only one minimum at ≲10 GeV. We discuss implications
of this simple observation below.

C. Attempts at interpreting the data that do not fit

A V-shaped curve representing the analytic solution
shown in Fig. 5 fits well to the AMS-02 data over slightly
more than two decades in energy. Other than the normali-
zation of e%, no free parameters, such as weights of different
sources, propagation parameters, etc., have been introduced.
Only the subshock spectral index, relevant to the lowest
momenta, was determined using a simplified solution of a
full nonlinear acceleration problem, as discussed above.
Therefore, there is a good reason to believe that theV-shaped
curve can be continued using the obtained solution also to
higher momenta. Above ∼70 GeV the agreement comes to
an end, at least for the next 200–300GeV. Let us ignore for a
moment the growing error bars and take the data points as
they are. Apart from a strong data scattering between ∼70
and 100 GeV, a distinct rise in the data above the SNR
background (represented by solid and dashed lines) is
observed. Itmaybe interpreted in severalways, both exciting
and prosaic ones. We briefly consider the following three.
Darkmatter or pulsar peak. Again, ignoring the error bars,

taking the decreasing trend between the two highest energy
data points as a reality, and the model as essentially correct,
we expect the higher energy points (when available) to return
on the dashed line. Such behavior will make a strong case for
the excess in the 100–300GeV having nothing to dowith the
processes described by the present model. It can then be
interpreted as a dark matter or pulsar contribution with a
cutoff at 300–400 GeV [5,6,10,43,46–50]. In this scenario,
the solid and dashed lines in Fig. 5 would represent an
“astrophysical background” to be subtracted from the e%

spectra to extract the new signal. Note that this background is
quite different from that normally used for the purpose, e.g.,
[10,51]. It is rising rather than falling with the energy, thus
allowing for a more gradual high-energy falloff in the future
data, to admit the dark matter interpretation. More about this
scenario can be told when the error bars shorten, and new
data points are available.
Synchrotron pileup. Webb et al. showed [52] that, if the

lepton spectrum is harder than p−4 below the synchrotron
cutoff, particles accumulate in this energy range, and the
spectrum flattens before it cuts off. As the SNR spectrum,
shown in Fig. 5, is essentially p−3.5, the AMS-02 excess in
the 100–300 GeV range can, in principle, be accounted for
by this phenomenon. However, this energy is too low for
the typical ISM magnetic field of a view μG to balance
acceleration and losses. At the same time, the magnetic

field in MCs is usually significantly higher, even though
their filling factor is not large. Therefore, a diffusive
trapping time of 100 GeV leptons in MC may be long
enough to enhance the losses significantly and facilitate the
pileup. The magnetic field can also be amplified by a
nonresonant, proton-driven instability [53] outside the MC
and, to some extent also in its interior [54]. The MC
electrostatic potential (∼GVÞ can hardly enhance the
electron trapping time compared to that of positrons.
Model deficiency. Taking the AMS-02 error bars in Fig. 5

more seriously, one may alternatively assume that the
positron fraction will continue increasing with a likely
saturation at higher energies. The explanations suggested
in the two preceding paragraphs can then be dismissed, and
the deviation from the present theory prediction at
> 100 GeV should be attributed to the incomplete descrip-
tion of particle acceleration in a CR modified shock. If true,
then essentially no room is left for additional sources, such as
the darkmatter annihilation or decay. Themodel will need to
be systematically improved, which is straightforward, as the
technique for obtaining a more accurate nonlinear solution is
available. It requires solving an integral equation [42] instead
of a PDE equation we solved in Sec. III A 1. Also, the entire
V-shaped curve in Fig. 5 will need to be recalculated
including a self-consistently determined low-energy spectral
index,without the simplematching procedurewe used in this
paper. Although we do not expect such improvement to be
significant, it will be done in future work, if the decreasing
trend at highest energies is not confirmed. Another possible
contribution to thepositron excessmay come froma runaway
avalanche and pair generation inside the MC [33,37].

IV. DISCUSSION OF ALTERNATIVES

Although the interpretations of the positron anomaly
often appear plausible (see, e.g., [23,55] for a review), they
do not form one cohesive picture. The problem seems to be
that very different models fit the data equally well. Indeed,
if we ignore the energy range beyond 200–300 GeV, where
even the AMS-02 data remain statistically poor, what needs
to be reproduced are two power laws (below and above
8 GeV) and the crossover region, characterized by the
position of the spectral minimum and its width (spectral
curvature). Altogether, the fit thus requires four parameters.
Let γ1 > γ2 be the spectral indices of the two often assumed
independent positron contributions, and Ceþ , their relative
weight. The positron flux is Φeþ ∝ p−γ1 þ Ceþp−γ2 .
Dividing Φeþ by its sum with an electron background
spectrum CB

e−p−γe , which provides the fourth parameter
CB
e− , one obtains the positron fraction

Feþ ¼ p−β1 þ Ceþpβ2

CB
e− þ p−β1 þ Ceþpβ2

; ð38Þ

which depends on four parameters. Here β1 ¼ γ1 − γe > 0
and β2 ¼ γe − γ2 > 0. Not the same but an essentially
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equivalent spectrum fitting recipe was suggested in the
original AMS-02 publication [4]. Not surprisingly, physi-
cally different models produce good fits as they effectively
need to provide just a correct combination of four inde-
pendent parameters. The question is then, how many of
them are ad hoc?
Returning to our analog of Eq. (38) given in Eq. (37), we

note that f0ðpÞ is determined by the shock history. So, only
two independent parameters, C, and ζ, remain to be
specified. As we have seen in the previous subsection,
these parameters correspond (up to linear transformation
thereof) to the positron weight relative to electrons from the
same SNR and the ISM background. One of them is a true
free parameter corresponding to the unknown MC density,
filling factor, and some nearby SNRs that contribute to the
positron fraction. The number of positrons, extracted from
a MC relative to the number of injected electrons, is
possible to calculate, in principle, but challenging. There
are two major problems with such calculations. First, the
rate at which electrons are injected from the ambient
plasma, regardless of the MCs and positrons, is a long-
standing problem in plasma astrophysics [56,57]. Second,
the extraction of positrons from the MC may be associated
with the gas breakdown and positron/electron runaway
accompanied by the pair production [33,58]. As we stated
earlier, the latter phenomena are not addressed in this paper,
which places certain limits on the parameters of MCs
considered, thus producing further uncertainty in the
positron normalization.
Sources of positrons other than the secondaries from pp

collisions have also been suggested. These are the radio-
active elements of the SN ejecta [59], pulsars, and dark
matter related scenarios [5,6,43,49]. However, these
scenarios seem to have enough “knobs” to tweak their
“four parameters.” Some SNR based approaches, e.g., [21]
directly use the AMS-02 data and the background radio
indices [22] to infer the fitting parameters. It is not clear if
these indices are a good proxy for the parent proton indices
responsible for the positron production. The radio indices
are known to be highly variable [60]. The position of the
spectral minimum also needs to be taken directly from the
AMS-02 data. Therefore, the physics of the spectrum
formation remains unclear, and the conclusion about the
likely absence of the dark matter contribution is not well
justified. By contrast, the present model attributes the
spectral minimum to the familiar nonlinear shock structure
supported by mildly relativistic protons. Understanding the
minimum validates the model prediction of the decreasing
and increasing branches around it, but only to the next
spectral feature. Such a feature indeed emerges at
∼100 GeV, but it is too early to say what it is. It is crucial
whether a trend in this feature towards the present model
predictions in Fig. 5 is confirmed by the next AMS-02 data
release. If it is, the 100–300 GeV feature may have nothing
to do with the positron generation in SNR. Then, it is

available for more interesting interpretations, such as dark
matter or pulsar contributions to the positron excess.
Now we return to the question whether other charge-sign

effects, known in the DSA, may produce the eþ=e−

anomaly. It has been argued for quite some time [14,61]
that injection of particles, at least in quasiparallel shocks,
promotes their diversity through disfavoring the most
abundant species, i.e., protons. The segregation mechanism
is simple. Protons, being injected in the largest numbers,
but not necessarily most efficiently, still make a dominant
contribution to the growth of unstable Alfven waves in
front of the shock. In collisionless shocks, such waves
support the shock transition by enabling the momentum
and energy transfer between upstream and downstream
plasmas, when the binary collisions are absent. In particu-
lar, the unstable waves control the particle injection by
transporting them to those parts of the phase space in shock
vicinity where they can cross and recross its front, thus
undergoing the Fermi-I acceleration. As these waves are
driven resonantly, that is, in a regime in which the wave-
particle interaction is most efficient, they react back on
protons also most strongly, as the wave driving particles.
Furthermore, the waves are almost frozen into the local
fluid so, when crossing the shock interface, they also
entrain most particles and prevent them from escaping
(or reflecting off the shock) upstream, thus significantly
reducing their odds for injection. Again, most efficient is,
namely, the proton entrainment, while, e.g., alpha particles
have somewhat better chances to escape upstream and to
get eventually injected. The wave-particle interaction for
He is weaker because of the mismatched wavelengths
generated by the protons since their mass-to-charge ratios
are different. The difference in the charge sign also
contributes in disfavor of protons, but this time through
the sign of the wave helicity they drive. The mechanism is
simply that the particle orbit, spiralling along with the spiral
magnetic field of the wave, has a preferred escape direction
along the mean field that depends on the charge sign, given
the field direction [61]. So p̄, for example, would have
better chances for injection than p but, as we argued earlier,
most of them are likely to be locked in MCs, and so
entrained with the shock flow.
The arguments concerning difference in p̄ and p

injection, equally apply to e− and eþ of similar rigidity.
Therefore, positrons would be disfavored in the injection
context by a conventional, wave-particle interaction-based
injection mechanism, were they injected from a thermal
pool. However, in this paper, we focused on positrons
released from MCs upstream with energies much higher
than the injection energy of protons from the thermal pool.
Therefore, they are scattered by much longer waves whose
spectrum is turbulent and probably mirror symmetric, so
the helicity-dependent, coherent wave-particle interactions
considered in [61] are irrelevant. By the same token,
electrons could be injected more easily, but the main
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problem for them is to reach gyroradii comparable to the
proton-driven wavelengths. Only in this case could they be
detrapped from the downstream turbulence and start cross-
ing the shock. Returning to the positrons, we conclude that,
although the charge-sign effect in their interaction with the
CR-driven (primarily by suprathermal protons) turbulence
cannot be ruled out, its role in the positron injection is
unlikely to be significant.

V. CONCLUSIONS AND OUTLOOK

The objectives of this paper have been a detailed
explanation of the eþ=e− energy spectrum and under-
standing of the charge-sign dependent particle injection
and shock acceleration. The principal results of our
study are
(1) Assuming that a SNR shock environment contains

clumps of weakly ionized dense molecular gas
(MC), we investigated the effects of their illumina-
tion by shock-accelerated protons before the shock
traverses the MC. The main effects are the
following:
(a) A MC of size LMC is charged (positively) by

penetrating protons to ∼ðLMC=pcÞðVsh=cÞ×
ð1eV=TeÞ3=2ðnCR=cm−3Þ GV, Eq. (17).

(b) Secondary positrons produced in pp collisions
inside the MC are preaccelerated by the MC
electric potential and expelled from the MC to
become a seed population for the DSA.

(c) Most of the negatively charged secondaries, such
as p̄, along with electrons and heavier nuclei,
remain locked inside the MC.

(2) Assuming that the shock Mach number, the proton
injection rate, and their cutoff momentum exceed the
threshold of an efficient acceleration regime [29], we
calculated the spectrum of injected positrons and,
concomitantly, electrons.
(a) The momentum spectra of accelerated leptons

have a concave form, characteristic for nonlinear
shock acceleration, which physically corre-
sponds to the steepening at low momenta, due
to the subshock reduction, and hardening at high
momenta, due to acceleration in the smooth part
of the precursor flow.

(b) The crossover region between the trends in (a) is
also directly related to the change in the proton
transport (from κ ∝ p2 to κ ∝ p) and respective
contribution to the CR partial pressure in a
mildly relativistic regime. The crossover pin-
points the 8 GeV minimum in the eþ=ðeþ þ e−Þ
fraction measured by AMS-02.

(c) Because of the nonlinear subshock reduction, the
MC crosses it virtually unshocked so that sec-
ondary p̄ and, in part, heavier nuclei accumu-
lated in its interior largely evade shock
acceleration.

Some important physical aspects of the proposed mecha-
nism have not been elaborated. These include, but are not
limited to, the following:
(1) Calculation of energy distribution of runaway posi-

trons preaccelerated in MC before their injection
into the DSA

(2) Calculation of electron injection for this kind of
shock environment

(3) Evaluation of conditions for the runaway gas break-
down in MC with associated pair production and
calculation of the yield of this process

(4) Escape of secondary antiprotons, generated in outer
regions of MC or with sufficient energy in its
interior, to the ambient plasma and their subsequent
diffusive acceleration

(5) Integration of the present calculations of positron
spectra into the available fully nonlinear DSA
solutions

(6) Study of the MC interaction with a supersonic flow
in modified shock precursor, bow shock formation
and implications for additional particle injection

Implementation of items (1), (2), and (5), will be particu-
larly useful when AMS-02 gathers more statistics in the
>102 GeV range, so that the positron fraction saturation
level can be more accurately compared with the prediction
of the improved model.
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APPENDIX A: PROPAGATION
OF CRS INSIDE MC

The spectrum of shock-accelerated CRs in the MC
interior may be different from that on its exterior for many
reasons. First, if the MC size is comparable to the shock
precursor, then the shock-accelerated particles, while pen-
etrating the MC from its near side, may quickly escape
through its far side [32]. They escape if Alfven waves,
confining particles to the shock precursor, develop a gap in
their power spectrum, which is due to ion-neutral collisions
[62]. Furthermore, an electric field that builds up in
response to the CR penetration will shield the MC from
the low-energy CRs. Finally, the magnetic field may be
considerably stronger in the MC than in the shock
precursor, and magnetic mirroring may become relevant
as well.
The CR propagation inside the MC can be treated using a

standard pitch-angle diffusion equation with magnetic
focusing and electric field terms:
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− e
∂ϕ
∂x
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μ
∂f
∂pþ 1 − μ2

p
∂f
∂μ

"
¼ ∂

∂μDðp; μÞ ∂f∂μ : ðA1Þ

Here μ ¼ p∥=p, v ≈ c and p denote particle velocity and
momentum, respectively; p∥ is the momentum projection
on the local field direction. An induced electric field
potential ϕðxÞ, and magnetic field BðxÞ, are allowed to
slowly (on the gyroradius scale) vary along the coordinate
x∥B. The pitch-angle diffusion coefficient, D, turns to zero
in the μ, p regions, where the resonant Alfven waves are
evanescent, as mentioned above.
Consider first the latter case, i.e., a scatter-free (no

resonant Alfven waves) particle propagation into the
MC. Looking for a steady state solution of the above
equation with a zero rhs we find

f ¼ finðH; IÞ; ðA2Þ

where Hðp; xÞ and Iðp; μ; xÞ are the particle energy and
magnetic moment, respectively:

H ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

pc2
q

þ eϕ

I ¼ p2

B
ð1 − μ2Þ: ðA3Þ

Here fin is an arbitrary function of its arguments that
must be determined from the boundary condition at the
edge of the MC. The CR distribution is nearly isotropic
outside the MC, so if we denote it at the MC edge as
f ¼ foutðpÞ, then inside the MC, instead of Eq. (A2), we

write f ¼ finðHÞ ¼ fout½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2=c2 −m2

pc2
q

'. We dropped

the second argument in Eq. (A2), I, because it does not
satisfy the isotropy condition. Returning to the variables x,
p, the solution inside the MC can be written as follows:

fðp;ϕÞ ¼ fout

$ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ e2ϕ2=c2 þ 2ðe=cÞϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

pc2
qr %

:

ðA4Þ

In the opposite case of frequent pitch-angle scattering,
the largest term of Eq. (A1) is on its rhs. For that reason,
the distribution must be nearly isotropic, f ≈ f0ðp; xÞ.
Following a standard reduction to diffusive transport
[63,64], we eliminate the rhs by averaging this equation
over the pitch angle:
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where we denoted

f0 ≡ 1
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Z
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which is a derivative along the line of constant particle
energy, given by Eq. (A3). The averaged value h·i in
Eq. (A5) can be calculated perturbatively from Eq. (A1),
considering the term on its rhs as the leading one and
ignoring the ∂f=∂t on its lhs. This term is irrelevant for the
long time evolution equation for f0 which we derive here.
Equation (A5) takes then the following form:

∂f0
∂t ¼ vB

p2

∂
∂x

))))
H

p2κ
vB

∂f0
∂x

))))
H
: ðA6Þ

Here we have introduced a conventional diffusion
coefficient

κ ¼ v2

4

*
ð1 − μ2Þ2

DðμÞ

+
:

It follows from Eqs. (A4) and (A6) that, assuming the
CR distribution outside the MC to be f ¼ foutðpÞ, we have
found it propagating into the MC along the lines of constant
H on the x, p plane. This conclusion holds up for both
ballistic and diffusive propagation. In fact, as we argued
earlier, in sufficiently dense molecular clouds the CR
propagate in part ballistically. Namely, for particles with
momenta

p1 < jp∥j < p2; ðA7Þ

there are no Alfven waves to resonate with, so that particles
with jp∥j > p1 propagate ballistically along the lines
Hðp; xÞ ¼ const on the x, p plane. Here the momenta
p1;2 are defined as follows:

p1 ¼ 2VAmpωc=νin; p2 ¼
p1

4

ffiffiffiffiffiffiffiffiffiffiffi
ρ0=ρi

p
> p1; ðA8Þ

where VA is the Alfven velocity, ωc is the proton (non-
relativistic) gyrofrequency ωc ¼ eB=mpc, νin is the ion-
neutral collision frequency, and ρ0=ρi ≫ 1 is the ratio of the
neutral to ion mass density. Particles with jp∥j < p1

propagate diffusively. Not surprisingly, the wave gap
widens with decreasing ionization rate ρi=ρ0, Eq.v (A8).
There are complications associated with the mixed

propagation of CRs in a MC. First, as the ballistic and
diffusive propagation times are different, a transient CR
distribution inside the MC will develop discontinuities at
the boundaries in momentum space given by p∥ ¼ p1;2.
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Moreover, if CRs enter the MC from one end and escape
from the other, as discussed above, a discontinuity at
p∥ ¼ p1 must develop even in a steady state, as argued
in detail in [32]. To avoid these complexities, which are not
inherent in the aspects of MC electrodynamics we are
concerned with here, we simplify the treatment as follows.
Assuming that the CR distribution function is approxi-
mately the same on the two faces of MC, magnetically
connected through its interior, the problem becomes
symmetric about the center of the MC, Fig. 1. Under these
circumstances, the CR distribution, which depends only on
particle energy, Eq. (A4), is valid for both ballistic and
diffusive propagation domains in the momentum space.
This simplification should not change the final result
concerning the positron injection from the MC into the
shock acceleration process significantly.
At a shock modified by the CR pressure, the spectrum is

different from that occurring in conventional shocks. The
modified spectrum can be represented by Eq. (32) upstream
(x > 0) and by fðx; pÞ ¼ fð0; pÞ downstream (x ≤ 0Þ. For
a steady state, an upper cutoff momentum is imposed, but it
does not play a significant role, inasmuch we do not include
the CR pressure explicitly. The CR density integral,
considered below, converges at p ¼ ∞, so we ignore the
high-energy asymptotic of f here. For what follows,
however, the CR diffusion coefficient κ plays an important
role. In a subshock zone, where the CR intensity is high and
so is the level of self-driven turbulence, a Bohm diffusion
regime is likely to establish, κ ¼ vrg=3, where vðpÞ and
rgðpÞ are the CR speed and gyroradius. This regime must
change at the periphery of the shock precursor, but this
region is not important for the present treatment. It may also
be seen that Eq. (32), representing the solution of shock
acceleration problem, is not separable in x and p, in the
usual terms. An important consequence of this property is a
coordinate-dependent low-energy cutoff, at a momentum
where ΨðxÞ ∼ κðpÞ.
The CR number density in the precursor can thus be

written as follows:

NCRðxÞ ¼ 4π
Z

∞

0
p2FðpÞe−qbðpÞΨðxÞ=3κðpÞdp: ðA9Þ

Generally speaking, the lower integration limit should be
equal to an injection momentum, pinj, at which the
solution in Eq. (32) should be matched with the thermal
distribution. The matching can be performed with some
overlapping between the above solution and an inter-
mediate asymptotic solution that, on the lower energy
end, smoothly transitions into the thermal distribution
[61]. However, as we primarily interested in the upstream
spectrum, for ΨðxÞ > κðpinjÞ, we replaced pinj by zero
in Eq. (A9).
We need to know the CR density inside the MC, while

the last expression provides this quantity at a distance x

from the subshock and can only be considered as boundary
condition for the CR distribution inside the MC. Therefore,
we evaluate NCR in Eq. (A9) as follows. First, normalizing
the proton momentum to mpc, we specify the diffusion
coefficient

κ ¼ κ0p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p ðA10Þ

where κ0 ∼ c2=ωc is the reference diffusivity of a mildly
relativistic proton (ωc denotes the nonrelativistic cyclotron
frequency). Next, we substitute this κ into Eq. (A9), bearing
in mind that the main contribution to the CR density comes
from mildly relativistic protons. In this range, their spec-
trum is close to p−4. Thus, we find NCRðxÞ ∝ 1=

ffiffiffiffi
Ψ

p
. In

fact, the contribution of higher energy protons, where the
spectrum hardens to p−7=2, does not change this result
significantly. Indeed, at ultrarelativistic momenta, κ also
changes its scaling to κ ∝ p, and the momentum differ-
ential under the integral in Eq. (A9) can be replaced by
dκ−1=2 in both cases. Thus, the coordinate dependence
NCRðxÞ ∝ 1=

ffiffiffiffi
Ψ

p
holds up. Using Eq. (33), after some

obvious notation changes, this dependence can be trans-
formed to Eq. (1).
Now we turn to the CR distribution inside a MC,

provided by Eq. (A4), given the MC electrostatic potential
and CR momentum distribution at the MC boundary,
discussed above. For the equilibrium solution to be valid,
the boundary condition should change slower than the CR
propagation time. This is certainly true for the ballistic CR
propagation, but it is only marginally acceptable for the
diffusive regime unless the CR diffusivity inside the MC is
larger than that outside. Note that this condition is met if
there is a strong collisional damping of Alfven waves that
confine CRs inside the MC. We assume it to be valid here,
for simplicity. The goal is to understand, what is the MC
response to the external charge brought in by the penetrat-
ing CRs.
Let us consider a magnetic field line threading a MC

and intersecting its surface at the points x ¼ %a. We
count the x coordinate from the center of the MC on the
field line. On assuming the CR distribution to be the
same at the end points, %a, the problem of MC charging
by the CRs and their neutralization by return currents
becomes symmetric in x. Hence, we can fix the boundary
condition for the induced electrostatic potential as
∂ϕ=∂x ¼ 0 at x ¼ 0 and ϕ ¼ 0 at x ¼ %a. In equilib-
rium, the CRs do not escape from the MC but merely
interchange with CRs outside. Consequently, they evenly
populate the lines of constant Hðx; pÞ, Eq. (A3), in the
particle phase space along the field lines. So, we can use
Eq. (A4) for the number density of CR inside the MC.
Regardless the propagation regime, ballistic or diffusive,
the CR number density inside the MC can be written
down as a function of ϕ
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NCRðϕÞ ¼ 4π
Z

p2

× fout

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ e2ϕ2=c2 þ 2ðe=cÞϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

qr !

dp:

ðA11Þ

Here foutðpÞ is the CR distribution at the MC boundary,
where ϕ ¼ 0.

APPENDIX B: ELECTRODYNAMICS INSIDE MC

First we demonstrate that the reduction of the PDE
system of Eqs. (7) and (8), to the ODE system of Eqs. (11)
and (12), via the representation given by Eqs. (9) and (10)
(homogeneous deformation flow), is a robust attractor of
the PDE solution. We demonstrate this by integrating the
PDE system directly. The result is illustrated in Fig. 6,
which shows the profile of Viðt; xÞ. Starting from the rest,
the flow adheres to a perfectly linear profile in x at all times.
The ion density niðt; xÞ remains constant in x, as it
should be.
Now we turn to Eqs. (11) and (12), which can be further

simplified by assuming nCR ≪ ni and denoting F ¼ νenCR:

∂ψ
∂t ¼ −ψðψ þ 1Þ þ Fψ þ ∂F

∂t ðB1Þ

∂ni
∂t ¼ −ψni: ðB2Þ

The function FðtÞ is derived here from nCRðtÞ, given in
Eq. (3)

F ¼ α
t0 − t

:

The dimensionless parameters α and t0 play an important
role in the analysis and are defined as follows [see Eqs. (1)
and (3)]:

α ¼ me

mi

a
u1

n0CRν
0
ei; t0 ¼ νina=u1: ðB3Þ

Recall that x0 denotes a MC’s closest approach to the
subshock. Clearly, x0 ∼ a, the size of a MC, so we simply
substituted a for x0 in the above parameters. The first factor
entering the parameter α is small, ≲10−3, but the remaining
combination of parameters has a meaning of the number of
e − i collisions inside the cloud during its shock crossing,
diminished by the factor n0CR=ni. Overall, α may become
quite large for big MCs.
Our next goal is to understand how the ion velocity ψ

grows with time while the MC approaches the subshock
from þ∞. The source function FðtÞ ∝ nCRðtÞ and we
assume that time is changing from t ¼ −∞ to t ¼ 0. At
this last moment, the MC starts crossing the subshock and
positrons generated in its interior are already largely
expelled by the electric field. This final value of the electric
field and a closely related value of ion outflow velocity
comprise the main subject of the analysis below.
Equation (B1) is independent of Eq. (B2) and it is easy to

guess its particular exact solution

ψ1ðtÞ ¼ F − 1: ðB4Þ

This solution is, however, unphysical since it does not
behave properly at t ¼ −∞. Nonetheless, we will use it to

FIG. 6. Time evolution of the ion velocity profile, starting from Viðx; 0Þ≡ 0, as described by Eqs. (7) and (8). The CR source term is
prescribed according to Eq. (3), nCR ∝ 1=ðt0 − tÞ. The ion density remains constant in x at all times. Here x ¼ 0 corresponds to the mid
point of the MC, while x ¼ 1—to its edge.
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find the solution with the proper behavior at t ¼ −∞, that is
ψ → 0, as t → −∞. For, we linearize Eq. (B1) using a
conventional substitution for Riccati equations

ψ ¼ 1

w
∂w
∂t þ

1

2
ðF − 1Þ ðB5Þ

and obtain the following equation for w:

∂2w
∂t2 −Qw ¼ 0 ðB6Þ

where we denoted

Q ¼ 1

4

$
ðF − 1Þ2 þ 2

∂F
∂t

%
:

Equation (B6) can be solved in terms of Whittaker
functions but, as we have already obtained one particular
solution, it is easier to find the required solution directly.
On denoting w1ðtÞ the solution of Eq. (B6), that corre-
sponds to ψ1 in Eq. (B4), we find from Eq. (B5) with
ψ ¼ ψ1∶

w1 ¼ eτ=2τ−α=2

where we used the notation τ≡ t0 − t. Now we can find the
second linearly independent solution to Eq. (B6), w2, as
follows:

w2 ¼ Cw1

Z
dτ
w2
1

where C is an arbitrary constant which does not play any
role given the relation between w and ψ in Eq. (B5).
Returning to the original variable ψ by substituting the last
expression into Eq. (B5), we find the required solution of
Eq. (B1):

ψ2ðτ; αÞ ¼
α
τ
− 1þ ταe−τR∞

τ tαe−tdt
: ðB7Þ

We rewrite this result in an equivalent form, dropping the
subscript at ψ in Eq. (13).
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